

such a trend, but this might be related to the different type of pathway involved (oncometabolite vs receptor tyrosine kinase).

It can be concluded, then, that biliary tract cancer is an important setting for implementation of precision medicine. The remaining question is how targeted therapies that have shown activity in clinical trials can be accessed by all patients seen in daily practice whose biliary tract cancers harbour such targetable alterations.⁹ Despite clear value, current data suggest that only a few patients do actually access such tailored treatments, especially in Europe.¹⁰ Many hurdles remain: to get quality samples to perform the analysis; to get funding for large-scale molecular screening, including multiple gene mutations, amplifications, and rearrangements; and to get funding for targeted therapies, sometimes based on phase 2 data, in a context where conducting large randomised trials might not be feasible because of the relative rarity of the disease. In this context, the FOLFOX and trastuzumab combination might prove to be an interesting option, but the same issues remain. How will this move from theory to practice for these patients? Will randomised phase 3 studies be feasible? Will it be possible to have these therapies reimbursed for these patients? How will it be ensured that more resource-constrained countries follow? It should be noted that most gallbladder cancers currently arise in low-income to middle-income countries, where providing access to precision medicine might be a major challenge, since other basic care needs are still not addressed. This issue is another illustration that after positive activity has been shown with a new treatment, access to innovation in everyday practice for all patients should be the next priority.

JE consulted for AstraZeneca, Basilea, Bayer, Beigene, Bristol Myers Squibb, Boston Scientific, Eisai, Incyte, Ipsen, Merck Serono, Merck Sharpe & Dohme, Roche, Servier, and Taiho; received travel expenses from Amgen; and received research funding (institutional) from Beigene, BMS, and Boston Scientific. AL received travel and educational support from AAA, Bayer, Delcath, Ipsen, Mylan, Novartis,

Pfizer, and SirtEx; received speaker honoraria from AAA, AstraZeneca, Eisai, Incyte, Ipsen, Merck, Pfizer, QED, and Servier; received advisory and consultancy honoraria from Albireo Pharma, AstraZeneca, Boehringer Ingelheim, Boston Scientific, Eisai, GENFIT, Nutricia Ipsen, QED, Roche, Servier, and TransThera Biosciences; and is member of the Knowledge Network and NETConnect Initiatives funded by Ipsen. AL received funding from European Union's Horizon 2020 Research and Innovation Programme (grant number 825510, ESCALON).

*Julien Edeline, Angela Lamarca

j.edeline@rennes.unicancer.fr

INSERM, Univ Rennes, Department of Medical Oncology, Centre de Lutte Contre le Cancer Eugène Marquis, Chemistry Oncogenesis Stress Signaling, UMR_S 1242, Rennes 35043, France (JE); Department of Oncology, OncoHealth Institute, Fundación Jiménez Díaz University Hospital, Madrid Spain (AL); Department of Medical Oncology, The Christie NHS Foundation, Manchester, UK (AL); Division of Cancer Sciences, University of Manchester, Manchester, UK (AL)

- 1 Lee C-K, Chon HJ, Cheon J, et al. Trastuzumab plus FOLFOX for HER2-positive biliary tract cancer refractory to gemcitabine and cisplatin: a multi-institutional phase 2 trial of the Korean Cancer Study Group (KCSG-HB19-14). *Lancet Gastroenterol Hepatol* 2022; published online Oct 31. [https://doi.org/10.1016/S2468-1253\(22\)00335-1](https://doi.org/10.1016/S2468-1253(22)00335-1).
- 2 Javle M, Borad MJ, Azad NS, et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a multicentre, open-label, phase 2a, multiple basket study. *Lancet Oncol* 2021; **22**: 1290–300.
- 3 Lamarca A, Palmer DH, Wasan HS, et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. *Lancet Oncol* 2021; **22**: 690–701.
- 4 Yoo C, Kim K-P, Kim I, et al. 55P Final results from the NIFTY trial, a phase IIb, randomized, open-label study of liposomal Irinotecan (nal-IRI) plus fluorouracil (5-FU)/leucovorin (LV) in patients (pts) with previously treated metastatic biliary tract cancer (BTC). *Ann Oncol* 2022; **33**: S565.
- 5 Vogel A, Wenzel P, Folprecht G, et al. 53MO Nal-IRI and 5-FU/LV compared to 5-FU/LV in patients with cholangio- and gallbladder carcinoma previously treated with gemcitabine-based therapies (NALIRICC – AIO-HEP-0116). *Ann Oncol* 2022; **33**: S563–64.
- 6 Galdy S, Lamarca A, McNamara MG, et al. HER2/HER3 pathway in biliary tract malignancies; systematic review and meta-analysis: a potential therapeutic target? *Cancer Metastasis Rev* 2017; **36**: 141–57.
- 7 Ohba A, Morizane C, Kawamoto Y, et al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing unresectable or recurrent biliary tract cancer (BTC): an investigator-initiated multicenter phase 2 study (HERB trial). ASCO Annual Meeting; June 3–7, 2022 (abstr 4006).
- 8 Meric-Bernstam F, Hanna DL, El-Khoueiry AB, et al. Zanidatamab (ZW25) in HER2-positive biliary tract cancers (BTCS): results from a phase I study. *Gastrointestinal Cancers Symposium*; Jan 15–17, 2021 (abstr 299).
- 9 Bourien H, Lamarca A, McNamara MG, Hubner RA, Valle JW, Edeline J. Druggable molecular alterations in bile duct cancer: potential and current therapeutic applications in clinical trials. *Expert Opin Investig Drugs* 2021; **30**: 975–83.
- 10 Lamarca A, Morfouace M, Tejpar S, et al. Molecular profiling and precision medicine in rare gastrointestinal cancers within EURACAN in the SPECTA Arcgen study (EORTC-1843): too few patients with matched treatment in Europe. *Ann Oncol* 2022; published online August 1. <https://doi.org/10.1016/j.annonc.2022.07.006>.

Has the COVID-19 pandemic changed endoscopy in the UK forever?

Before the COVID-19 pandemic, approximately 2 million diagnostic gastrointestinal endoscopies were performed annually in the UK. In addition to the growing number of increasingly complex interventional procedures such

as endoscopic retrograde cholangiopancreatography, endoscopic ultrasonography, device-assisted small bowel endoscopy, endoscopic mucosal resections, and endoscopic submucosal dissection, increasing

demand was also being driven by the needs of an ageing population, increasing numbers of patients requiring surveillance, and the need to expand capacity for bowel cancer screening, both by flexible sigmoidoscopy and faecal occult blood testing.

Services across the UK were struggling to meet target waiting times, relying on weekend working, waiting list initiatives, outsourcing, and insourcing. The longer term plan was to increase capacity by training more endoscopists.¹ The decade before the pandemic saw substantial changes in the evolution of endoscopy as an evidence-based specialty, with large clinical studies informing changes to practice, although clinicians still followed the dogma that gastrointestinal endoscopy was the cornerstone of diagnosis in luminal gastroenterology because of unrivalled mucosal visualisation and biopsy capability.

However, only 3–4% of patients referred for endoscopy on an urgent cancer pathway were found to have malignancy. Thus, large numbers of patients were undergoing invasive and expensive procedures with a relatively low yield of clinically significant pathology. Clinicians were asking whether doing more endoscopies could be replaced with doing smarter endoscopy, using less invasive initial tests, risk adapted referral, or endoscopy only for therapeutic indications.^{2,3}

During the pandemic, the capacity to deliver endoscopy was substantially reduced and the number of people on waiting lists grew enormously. Early guidance on prioritisation and mitigation strategies was published⁴ and roll-out of alternative diagnostic modalities was expedited. Cytosponge was used as an alternative for Barrett's oesophagus surveillance and in some areas for selected patients referred with chronic reflux symptoms.⁵ Barium swallow returned for selected patients with dysphagia and transnasal endoscopy (believed to cause less gagging and less aerosol generation) was used more widely. The Edinburgh dysphagia score was reintroduced as a prioritisation tool. A no biopsy strategy for diagnosis of coeliac disease in adults was introduced for patients with substantially elevated tissue transglutaminase (TTG) antibody concentrations.⁴ In the lower gastrointestinal tract, faecal immunochemical testing (FIT) was used for symptomatic patients as a triage tool or as a rule in-rule out test for further endoscopy.⁶ Pilot studies of colon capsule endoscopy as an alternative to colonoscopy

began or were extended.⁷ The flexible sigmoidoscopy colorectal cancer screening programme was suspended during the pandemic and many surveillance procedures were postponed.

As we head towards 2023, COVID-19 remains with us, although health-care services are recovering. However, there is now a legacy of long waiting lists and a tired and understaffed workforce. It is imperative that health services do not simply return to old ways of working and consider how we deliver smarter endoscopy. Some approaches introduced during the pandemic should continue, some require further research, and some should be abandoned.

Cytosponge is here to stay as a tool for investigating the upper gastrointestinal tract. It has high sensitivity and specificity for high grade dysplasia and early cancer in patients with reflux symptoms and those undergoing Barrett's oesophagus surveillance, and is a safe triage tool.^{8,9} Ongoing research should address which patients with reflux also require or would be better served by undergoing upper gastrointestinal endoscopy as well as addressing safety netting approaches. The Edinburgh dysphagia score is easy to use and might remain useful to prioritise urgency of investigations in patients with dysphagia. Barium swallows were helpful in a crisis but moving forward their role will once again be very limited. Transnasal endoscopy is better tolerated than per oral upper gastrointestinal endoscopy and more widespread implementation should be encouraged.

Paediatric gastroenterology has long accepted raised TTG concentrations as diagnostic of coeliac disease. The pandemic approach of two TTG readings of more than 10 times the upper limit of the normal laboratory range confirming coeliac disease in adults has been continued by many clinicians and should be enshrined in formal guidance moving forward.¹⁰

Lower gastrointestinal endoscopy has seen substantial changes during the pandemic, some of which will remain. The most substantial change to practice relates to FIT. 2022 UK guidance advocates FIT in primary care for almost all patients with symptoms suggestive of possible colorectal cancer. With a few caveats, only symptomatic patients with a raised FIT should be referred for colonoscopy or CT colonography.¹¹ Ongoing research seeks to establish how other biomarkers and patient factors might sit alongside FIT in a referral algorithm. Further research should establish the optimal

FIT threshold and whether it should vary depending on patient factors. Surveillance colonoscopy uses a lot of resources and new guidance introduced just before the pandemic has reduced this workload considerably.¹² The role of FIT as a possible tool to guide surveillance requires further study.

Capsule investigation of the small bowel is well established, with growing interest in the role of colon capsule endoscopy. There is enthusiasm for wider roll-out of colon capsule endoscopy, but the evidence base is not strong. High grade evidence regarding the role of colon capsule endoscopy as an alternative to established lower gastrointestinal investigations is required.

In terms of population-based screening, flexible sigmoidoscopy was designed to prevent colorectal cancer, and it will not recommence. Although the national screening programme plans to lower the age of FIT-based screening to compensate for the lost flexible sigmoidoscopy screening programme, this opportunity to prevent many cases of colorectal cancer has been a long-term casualty of the pandemic.

It is important to ensure that endoscopy is delivered smartly on the basis of good quality evidence. Evidence-based understanding of a patient's inherent risk, combined with stratification of symptoms and use of biomarkers, should allow endoscopy to be targeted to those individuals most likely to benefit from it. This will involve a change of mindset, including a move away from defensive medicine to an approach based on an individual's relative risk of disease, particularly when it comes to serious diagnoses such as cancer.

CR has received grant funding from ARC Medical, Norgine, Medtronic, 3D Matrix Solutions, and Olympus Medical. He was an expert witness for ARC Medical and Olympus medical. IP has received speaker fees from Olympus Medical, Boston Scientific, Medtronic, and Dr Falk.

Crown Copyright © 2022 Published by Elsevier Ltd. All rights reserved.

*Colin Rees, Ian Penman

colin.rees@newcastle.ac.uk

Population Health Sciences Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK (CR); Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh, Edinburgh, UK (IP)

- 1 Richards M. Diagnostics: recovery and renewal—report of the independent review of diagnostic services for NHS England. 2020. <https://www.england.nhs.uk/publication/diagnostics-recovery-and-renewal-report-of-the-independent-review-of-diagnostic-services-for-nhs-england/> (accessed Sept 26, 2022).
- 2 Hampton JS, Koo S, Dobson C, et al. The COLO-COHORT (Colorectal Cancer Cohort) study: protocol for a multi-centre, observational research study and development of a consent-for-contact research platform. *Colorectal Dis* 2022; **24**: 1216–26.
- 3 Hull MA, Rees CJ, Sharp L, Koo S. A risk-stratified approach to colorectal cancer prevention and diagnosis. *Nat Rev Gastroenterol Hepatol* 2020; **17**: 773–80.
- 4 Rees CJ, East JE, Oppong K, et al. Restarting gastrointestinal endoscopy in the deceleration and early recovery phases of COVID-19 pandemic: guidance from the British Society of Gastroenterology. *Clin Med (Lond)* 2020; **20**: 352–58.
- 5 Ross-Innes CS, Debiram-Beecham I, O'Donovan M, et al. Evaluation of a minimally invasive cell sampling device coupled with assessment of trefoil factor 3 expression for diagnosing Barrett's esophagus: a multi-center case-control study. *PLoS Med* 2015; **12**: e1001780.
- 6 D'Souza N, Hicks G, Benton SC, Abulafi M. The diagnostic accuracy of the faecal immunochemical test for colorectal cancer in risk-stratified symptomatic patients. *Ann R Coll Surg Engl* 2020; **102**: 174–79.
- 7 NHS England. NHS rolls out capsule cameras to test for cancer. <https://www.england.nhs.uk/2021/03/nhs-rolls-out-capsule-cameras-to-test-for-cancer/> (accessed Sept 26, 2022).
- 8 Fitzgerald RC, di Pietro M, O'Donovan M, et al. Cytospunge-trefoil factor 3 versus usual care to identify Barrett's oesophagus in a primary care setting: a multicentre, pragmatic, randomised controlled trial. *Lancet* 2020; **396**: 333–44.
- 9 Pilonis ND, Killcoyne S, Tan WK, et al. Use of a cytosponge biomarker panel to prioritise endoscopic Barrett's oesophagus surveillance: a cross-sectional study followed by a real-world prospective pilot. *Lancet Oncol* 2022; **23**: 270–78.
- 10 Penny HA, Raju SA, Sanders DS. Progress in the serology-based diagnosis and management of adult celiac disease. *Expert Rev Gastroenterol Hepatol* 2020; **14**: 147–54.
- 11 Monahan KJ, Davies MM, Abulafi M, et al. Faecal immunochemical testing (FIT) in patients with signs or symptoms of suspected colorectal cancer (CRC): a joint guideline from the Association of Coloproctology of Great Britain and Ireland (ACPGBI) and the British Society of Gastroenterology (BSG). *Gut* 2022; **71**: 1939–62.
- 12 Rutter MD, East J, Rees CJ, et al. British Society of Gastroenterology/Association of Coloproctology of Great Britain and Ireland/Public Health England post-polypectomy and post-colorectal cancer resection surveillance guidelines. *Gut* 2020; **69**: 201–23.

Challenges in gastroenterology training in Australia

Selection into gastroenterology advanced training in Australia is becoming increasingly competitive, in part due to the rapid growth in the number of medical graduates. Following completion of medical school, doctors generally undertake 4–5 years of generalist training before applying to gastroenterology advanced training. At this stage, a substantial mismatch exists between the supply and demand for gastroenterology

training positions, with only 25% of applicants being successful.¹ This process is highly competitive, and it is becoming increasingly common for applicants to undertake additional years of training or higher degrees before starting advanced gastroenterology training, resulting in an overall extended length of training. With trainees entering gastroenterology training becoming older, more flexibility within training